7,612 research outputs found

    On finite-size Lyapunov exponents in multiscale systems

    Full text link
    We study the effect of regime switches on finite size Lyapunov exponents (FSLEs) in determining the error growth rates and predictability of multiscale systems. We consider a dynamical system involving slow and fast regimes and switches between them. The surprising result is that due to the presence of regimes the error growth rate can be a non-monotonic function of initial error amplitude. In particular, troughs in the large scales of FSLE spectra is shown to be a signature of slow regimes, whereas fast regimes are shown to cause large peaks in the spectra where error growth rates far exceed those estimated from the maximal Lyapunov exponent. We present analytical results explaining these signatures and corroborate them with numerical simulations. We show further that these peaks disappear in stochastic parametrizations of the fast chaotic processes, and the associated FSLE spectra reveal that large scale predictability properties of the full deterministic model are well approximated whereas small scale features are not properly resolved.Comment: Accepted for publication in Chao

    Measuring the impact of observations on the predictability of the Kuroshio Extension in a shallow-water model

    Get PDF
    In this paper sequential importance sampling is used to assess the impact of observations on a ensemble prediction for the decadal path transitions of the Kuroshio Extension (KE). This particle filtering approach gives access to the probability density of the state vector, which allows us to determine the predictive power — an entropy based measure — of the ensemble prediction. The proposed set-up makes use of an ensemble that, at each time, samples the climatological probability distribution. Then, in a post-processing step, the impact of different sets of observations is measured by the increase in predictive power of the ensemble over the climatological signal during one-year. The method is applied in an identical-twin experiment for the Kuroshio Extension using a reduced-gravity shallow water model. We investigate the impact of assimilating velocity observations from different locations during the elongated and the contracted meandering state of the KE. Optimal observations location correspond to regions with strong potential vorticity gradients. For the elongated state the optimal location is in the first meander of the KE. During the contracted state of the KE it is located south of Japan, where the Kuroshio separates from the coast

    Age of second language acquisition affects nonverbal conflict processing in children : an fMRI study

    Get PDF
    Background: In their daily communication, bilinguals switch between two languages, a process that involves the selection of a target language and minimization of interference from a nontarget language. Previous studies have uncovered the neural structure in bilinguals and the activation patterns associated with performing verbal conflict tasks. One question that remains, however is whether this extra verbal switching affects brain function during nonverbal conflict tasks. Methods: In this study, we have used fMRI to investigate the impact of bilingualism in children performing two nonverbal tasks involving stimulus-stimulus and stimulus-response conflicts. Three groups of 8-11-year-old children - bilinguals from birth (2L1), second language learners (L2L), and a control group of monolinguals (1L1) - were scanned while performing a color Simon and a numerical Stroop task. Reaction times and accuracy were logged. Results: Compared to monolingual controls, bilingual children showed higher behavioral congruency effect of these tasks, which is matched by the recruitment of brain regions that are generally used in general cognitive control, language processing or to solve language conflict situations in bilinguals (caudate nucleus, posterior cingulate gyrus, STG, precuneus). Further, the activation of these areas was found to be higher in 2L1 compared to L2L. Conclusion: The coupling of longer reaction times to the recruitment of extra language-related brain areas supports the hypothesis that when dealing with language conflicts the specialization of bilinguals hampers the way they can process with nonverbal conflicts, at least at early stages in life

    A Case Study of Sedimentation of Charged Colloids: The Primitive Model and the Effective One-Component Approach

    Full text link
    Sedimentation-diffusion equilibrium density profiles of suspensions of charge-stabilized colloids are calculated theoretically and by Monte Carlo simulation, both for a one-component model of colloidal particles interacting through pairwise screened-Coulomb repulsions and for a three-component model of colloids, cations, and anions with unscreened-Coulomb interactions. We focus on a state point for which experimental measurements are available [C.P. Royall et al., J. Phys.: Cond. Matt. {\bf 17}, 2315 (2005)]. Despite the apparently different picture that emerges from the one- and three-component model (repelling colloids pushing each other to high altitude in the former, versus a self-generated electric field that pushes the colloids up in the latter), we find similar colloidal density profiles for both models from theory as well as simulation, thereby suggesting that these pictures represent different view points of the same phenomenon. The sedimentation profiles obtained from an effective one-component model by MC simulations and theory, together with MC simulations of the multi-component primitive model are consistent among themselves, but differ quantitatively from the results of a theoretical multi-component description at the Poisson-Boltzmann level. We find that for small and moderate colloid charge the Poisson-Boltzmann theory gives profiles in excellent agreement with the effective one-component theory if a smaller effective charge is used. We attribute this discrepancy to the poor treatment of correlations in the Poisson-Boltzmann theory.Comment: 9 pages, 7 figure

    Structure and thermodynamics of colloid-polymer mixtures: a macromolecular approach

    Full text link
    The change of the structure of concentrated colloidal suspensions upon addition of non-adsorbing polymer is studied within a two-component, Ornstein-Zernicke based liquid state approach. The polymers' conformational degrees of freedom are considered and excluded volume is enforced at the segment level. The polymer correlation hole, depletion layer, and excess chemical potentials are described in agreement with polymer physics theory in contrast to models treating the macromolecules as effective spheres. Known depletion attraction effects are recovered for low particle density, while at higher densities novel many-body effects emerge which become dominant for large polymers.Comment: 7 pages, 4 figures; to be published in Europhys. Let

    Nonlinear data-assimilation using implicit models

    Get PDF
    International audienceWe show how the traditional 4D-Var method can be adapted for implicit time-integration and extended for multi-parameter estimation. We present the algorithm for this new method, which we call I4D-Var, and demonstrate its performance using a fully-implicit barotropic quasi-geostrophic model of the wind-driven double-gyre ocean circulation. For the latter model, the different regimes of flow behavior and the regime boundaries (i.e. bifurcation points) are well known and hence the parameter estimation problem can be systematically studied. It turns out that I4D-Var is able to correctly estimate parameter values, even when background flow and "observations" are in different dynamical regimes

    Structural basis of the chiral selectivity of Pseudomonas cepacia lipase

    Get PDF
    To investigate the enantioselectivity of Pseudomonas cepacia lipase, inhibition studies were performed with SC- and RC-(RP,SP)-1,2-dialkylcarbamoylglycero-3-O-p-nitrophenyl alkylphosphonates of different alkyl chain lengths. P. cepacia lipase was most rapidly inactivated by RC-(RP,SP)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octylphosphonate (RC-trioctyl) with an inactivation half-time of 75 min, while that for the SC-(RP,SP)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octyl-phosphonate (SC-trioctyl) compound was 530 min. X-ray structures were obtained of P. cepacia lipase after reaction with RC-trioctyl to 0.29-nm resolution at pH 4 and covalently modified with RC-(RP,SP)-1,2-dibutylcarbamoylglycero-3-O-p-nitrophenyl butyl-phosphonate (RC-tributyl) to 0.175-nm resolution at pH 8.5. The three-dimensional structures reveal that both triacylglycerol analogues had reacted with the active-site Ser87, forming a covalent complex. The bound phosphorus atom shows the same chirality (SP) in both complexes despite the use of a racemic (RP,SP) mixture at the phosphorus atom of the triacylglycerol analogues. In the structure of RC-tributyl-complexed P. cepacia lipase, the diacylglycerol moiety has been lost due to an aging reaction, and only the butyl phosphonate remains visible in the electron density. In the RC-trioctyl complex the complete inhibitor is clearly defined; it adopts a bent tuning fork conformation. Unambiguously, four binding pockets for the triacylglycerol could be detected: an oxyanion hole and three pockets which accommodate the sn-1, sn-2, and sn-3 fatty acid chains. Van der Waals’ interactions are the main forces that keep the radyl groups of the triacylglycerol analogue in position and, in addition, a hydrogen bond to the carbonyl oxygen of the sn-2 chain contributes to fixing the position of the inhibitor.
    corecore